Bicyclo[3.3.1]nonanes as synthetic intermediates. Part 19. ${ }^{1}$ A symmetric cleavage of ω-azabicyclo[3.n.1]alkan-3-ones at the 'fork head'

Takefumi M omose,*,a M inoru Toshima, ${ }^{\text {a }}$ N aoki Toyooka, ${ }^{\text {a }}$ Y oshiro Hirai $\dagger^{, a}$ and C onrad H ans E ugster ${ }^{\text {b }}$

${ }^{\text {a }}$ F aculty of P harmaceutical Sciences, Toyama M edical and Pharmaceutical U niversity, Sugitani 2630, Toyama 930-01, J apan
${ }^{\text {b }}$ O rganisch-chemisches I nstitut der U niversität Z ürich, W interthurerstrasse 190,
CH-8057 Z ürich, Switzerland

Abstract

A symmetric cleavage of ω-azabicyclo[3.n.1]alkan-3-ones was achieved by asymmetric deprotonation at the 'fork head' ketone system with K oga's chiral base and subsequent ozonolysis of the resulting chiral silyl enol ether to give the cis- α, α^{\prime}-disubstituted piperidine, pyrrolidine and hexahydroazepine, respectively, in high enantiomeric excess.

Introduction

There have been isolated, from natural sources, a number of piperidines ${ }^{2}$ bearing carbonaceous substituents at both the α and α^{\prime} positions in a cis modeand also pyrrolizidines or indolizidines ${ }^{3}$ where the relative stereochemistry at the bridgehead and either of the other two α-nitrogenous positions, i.e. C-3 and $\mathrm{C}-5$, is of a cis configuration.

Of the potential strategies available to construct these ring systems, cyclisation to form α, α^{\prime}-disubstituted pyrrolidine systems by intramolecular attack of nitrogenous species upon an olefinic linkage is known to afford products with a trans disposition; ${ }^{4}$ further, the construction of the indolizidine skeleton starting with a piperidine compound which undergoes cyclisation between the ring nitrogen and the ring substituent at the α position is known to afford a mixture of stereoisomers where the bridgehead hydrogen and the substituent at C-3 are in both cis and trans configurations, although products with the former stereochemistry predominate. ${ }^{5}$

Fig. 1

Fig. 2

[^0]Nevertheless, several methods have been developed for the stereoselective construction of these molecules. ${ }^{6}$ A s part of our effort aimed at the use of the nitrogen-bridged bicyclic system for the stereoselective construction of nitrogen heterocycles, we examined the α-ketonic cleavage of the piperidone system embodied in the σ-symmetric rigid twin-ring system, ω -azabicyclo[3.n.1]alkan-3-one. Here the α - and α^{\prime}-nitrogenous carbon linkages are forced to form a cis configuration, and we found that asymmetric enolisation of the 'fork head' ketone by Koga's protocol ${ }^{7}$ and subsequent ozonolysis of the resulting chiral enol ether afforded cis- α, α^{\prime}-disubstituted nitrogen heterocycles in high enantiomeric excess. This paper describes a full account of our experimental work. ${ }^{8}$

Results and discussion

The starting materials, the azabicyclic ketones 1-3, were prepared in $50-78 \%$ yields via the N -benzyl derivatives 4-6, prepared by a known procedure; ${ }^{9,10}$ asymmetric enolisation of the ketones 1-3 according to K oga's protocol was then examined.

$$
\begin{aligned}
& \mathbf{4} \quad n=1(78 \%) \\
& \mathbf{5} \quad n=0(78 \%) \\
& \mathbf{6} \quad n=2(50 \%)
\end{aligned}
$$

Scheme 2 Reagents and conditions: i, benzylamine $\cdot \mathrm{HCl}$, acetonedicarboxylic acid; ii, $\mathrm{H}_{2}, 5 \% \mathrm{Pd}-\mathrm{C}, \mathrm{AcOH}, 60^{\circ} \mathrm{C}$; iii, $\mathrm{ClCO}_{2} \mathrm{M}$ e or $\mathrm{CICO}_{2} \mathrm{Bn}$, aq. $\mathrm{K}_{2} \mathrm{CO}_{3}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$

A symmetric enolisation of the azabicyclic 'fork head' ketones

 1-3First, we examined the asymmetric deprotonation of methyl 3-oxo-9-azabicyclo[3.3.1]nonane-9-carboxylate 1 with Koga's
chiral lithium amide $\mathbf{7}$ in the presence of chlorotrimethylsilane (TM SCI) at $-100^{\circ} \mathrm{C}$ to give the desired silyl enol ether 8 in 94% yield. Similarly, asymmetric enolisation of benzyl $3-0 \times 0-8$ -azabicyclo[3.2.1]octane-8-carboxylate 2 and benzyl 3-oxo-10-azabicyclo[4.3.1]decane-10-carboxylate 3 by the same procedure gave the silyl enol ethers 9 (89%) and $\mathbf{1 0}$ (75%).

Scheme 3
Transformation of the chiral enol ethers 8-10 into the α, α^{\prime} bifunctionalised cis-disubstituted piperidine 11, pyrrolidine 12 and hexahydroazepine 13 and determination of their enantiomeric excesses (ee)
Ozonisation of the chiral enol ethers 8-10 and subsequent esterification of the products with diazomethane gave the α, α^{\prime} bifunctionalised cis-disubstituted piperidine 11 (60\%), pyrrolidine 12 (60%) and hexahydroazepine 13 (75\%). The ee values for these, 93,90 and 90% respectively, were determined by high-performance liquid chromatography (HPLC) analysis ${ }^{11}$ using a chiral column.

Scheme 4 Reagents and conditions: $\mathrm{i}, \mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}=10: 1$, $-78^{\circ} \mathrm{C}$, then NaBH 4 ; $\mathrm{ii}, \mathrm{CH}_{2} \mathrm{~N}_{2}, \mathrm{Et}_{2} \mathrm{O}$

Determination of the absolute configuration of the piperidine 11
The action of K oga's chiral base on the ketones 1-3 resulted in the enantioselective abstraction of the axial hydrogen H_{a} leading to the ethers 8-10; this behaviour was tentatively predictable by assuming the involvement of the transition state model proposed by K oga. The prediction was confirmed by chemical transformation of the products into compounds of known absolute configuration.

|||

Scheme 5
Determination of the absolute configuration of $11(2 R, 6 S)$ was established by conversion of the compound into (+)dihydropinidine 14, the dihydro derivative of (-)-pinidine. ${ }^{12}$ The piperidine 11 was converted into the thioacetal $\mathbf{1 5}$ (73\%). Desulfurisation of 15 with Raney $\mathrm{Ni}(\mathrm{W}-4)$ gave an α-methylpiperidine 16 (86\%). Reduction of the ester group in 16 with lithium triethylborohydride (Super-H ydride) followed by a Swern oxidation and subsequent Wittig olefination of the resulting aldehyde afforded the olefin 17 (57\%). The catalytic hydrogenation of 17 over $5 \% \mathrm{Pd}-\mathrm{C}$ and subsequent decarbamoylation with iodotrimethylsilane (TM SI) ${ }^{13}$ furnished 14 (87\%). Synthetic (+)-dihydropinidine hydrochloride had a value of $[a]_{D}^{26}+11.6(\mathrm{c} 0.15, \mathrm{EtOH})$, similar to that $\left\{[\alpha]_{D}^{25}+12.7\right.$ (c 1.07 , EtOH \} ${ }^{14}$ reported for an authentic specimen derived from natural (-)-pinidine and the spectral properties (${ }^{1} \mathrm{H}$ N M R and mass) of 14 were identical with those of (\pm)-dihydropinidine hydrochloride ${ }^{15}$

11

17

14
Scheme 6 Reagents and conditions: i, Swern oxidn.; ii, ethanedithiol, $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$; iii, Raney Ni (W-4); iv, Super-Hydride; v, $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}$; vi, $\mathrm{H}_{2}, 5 \% \mathrm{Pd}-\mathrm{C}$; vii, TM SI ; viii, $\mathrm{HCl} / \mathrm{M} \mathrm{eOH}$

Synthesis of the enantiodivergent synthons 18 and 19

Finally, we examined the transformation of 11 or $\mathbf{1 2}$ into the enantiodivergent synthon 18 or 19. Protection of the hydroxy group in $\mathbf{1 1}$ or $\mathbf{1 2}$ with tert-butylchlorodimethylsilane (TBSCI) or methoxymethyl chloride (MOMCI) and subsequent reduc-

Scheme 7 Reagents and conditions: i, TBSCI, Et ${ }_{3} \mathrm{~N}, \mathrm{DMAP}$ or M OM CI, $\mathrm{Pr}_{2}{ }_{2} \mathrm{NEt}$; ii, Super-H ydride; iii, $\mathrm{O}-\mathrm{NO}_{2} \mathrm{PhSeCN}, \mathrm{Bu}_{3} \mathrm{P}$ then $\mathrm{H}_{2} \mathrm{O}_{2} ; \mathrm{iv}, \mathrm{O}_{3},-78^{\circ} \mathrm{C}$ then NaBH
tion with Super-Hydride gave the alcohol 20 (78%) or 21 (84%), Dehydration of 20 or 21 was effected by treatment with 0nitrophenyl selenocyanate followed by oxidation with $\mathrm{H}_{2} \mathrm{O}_{2}{ }^{16}$ to afford the olefin 22 (71%) or $\mathbf{2 3}$ (70%). The olefin 22 or $\mathbf{2 3}$ was ozonised, and treatment of the resulting ozonide with sodium borohydride $\left(\mathrm{NaBH}_{4}\right)$ produced the desired σ-symmetryfashioned piperidine 18 (94\%) or pyrrolidine 19 (60\%).

C onclusion

The piperidine $\mathbf{1 8}$ or pyrrolidine $\mathbf{1 9}$ have potential as chiral building blocks for the enantiodivergent synthesis of alkaloids possessing the cis-2,6-disubstituted piperidine or cis-2,5disubstituted pyrrolidine skeleton. Thus, the ω-azabicyclo-[3.n.1]alkan-3-ones proved to be very suitable substrates for the asymmetric deprotonation with K oga's chiral base, and the cisα, α^{\prime}-disubstituted piperidine 11 or pyrrolidine $\mathbf{1 2}$ obtained from the ozonolysis of the silyl enol ether $\mathbf{8}$ or 9 could beone of the most important chiral building blocks for alkaloid syntheses. The enantioselective synthesis of alkaloids starting with $\mathbf{1 1}$ or $\mathbf{1 8}$ and with $\mathbf{1 2}$ or $\mathbf{1 9}$ will be published in due course.

Experimental

Optical rotations were measured with a JA SCO DIP-140 polarimeter and are recorded as $10^{-1} \operatorname{deg} \mathrm{~cm}^{2} \mathrm{~g}^{-1}$. IR spectra were recorded on a JASCO A-102 grating spectrophotometer or Perkin-Elmer $1600 \mathrm{FT}-\mathrm{IR}$ spectrophotometer. ${ }^{1} \mathrm{H}$ NMR spectra were taken on a JEOL GX-270 spectrometer in deuteriochloroform unless otherwise stated. Chemical shifts are given in $\mathrm{ppm}(\delta)$ downfield from internal tetramethylsilane and J values are given in Hz . Resonance patterns in ${ }^{1} \mathrm{H}$ NMR spectra are shown as $s=$ singlet, $d=$ doublet, $t=$ triplet, $q=q u a r t e t$, $\mathrm{m}=$ multiplet and $\mathrm{br}=$ broad. Low- and high-resolution MS were obtained on a J EOL JM S D-200 instrument, with a direct inlet system at 70 eV . M ps were determined with a Yanagimoto micro-melting point apparatus and are uncorrected. Elemental analyses were performed by the microanalytical laboratory of this University. Column chromatography was performed on silica gel [Fuji-D avison BW-200, M erck 60 (No 9385)]. The organic extracts were dried over MgSO_{4} unless otherwise stated.

9-Benzyl-9-azabicyclo[3.3.1]nonan-3-one 4^{9}

A cetonedicarboxylic acid ($30.8 \mathrm{~g}, 0.211 \mathrm{~mol}$) was added to a solution of pentanedial (25% solution; $84.5 \mathrm{~g}, 0.211 \mathrm{~mol}$) and benzylamine hydrochloride ($36.3 \mathrm{~g}, 0.253 \mathrm{~mol}$) in water ($90 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$, after which 10% aqueous $\mathrm{AcONa}\left(70 \mathrm{~cm}^{3}\right)$ was added to the reaction mixture. The mixture was stirred for 1 h at room temperature and then for 4 h at $50^{\circ} \mathrm{C}$. A fter this the reaction mixture was adjusted to pH 2 with 10% aqueous HCl and then washed with $\mathrm{Et}_{2} \mathrm{O}\left(50 \mathrm{~cm}^{3} \times 3\right)$; it was then adjusted to pH 6 with NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(50 \mathrm{~cm}^{3} \times 7\right)$. The organic extracts were dried and evaporated to give a pale orange paste, which was taken up in hot $\mathrm{Et}_{2} \mathrm{O}\left(30 \mathrm{~cm}^{3} \times 10\right)$. The organic extracts were evaporated and the residue was purified by distillation under reduced pressure (bp $115-120^{\circ} \mathrm{C}$, 0.005 mmH g, lit., ${ }^{9}$ bp $165-169^{\circ} \mathrm{C}, 0.2 \mathrm{mmH}$ g) to afford 4 (38.5 $\mathrm{g}, 78 \%$) as a colourless solid; $v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1689 ; \delta_{\mathrm{H}}$ 1.49$1.59\left(6 \mathrm{H}, \mathrm{m}\right.$, ring CH_{2}), $2.26\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 19, \mathrm{COCH}_{2 \mathrm{eq}}\right)$, 2.76 (2 H, dd, J 19 and $8, \mathrm{COCH}_{2 a x}$), 3.28-3.49 (2 H , br, N CH), 3.91 (2 $\mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}$) and $7.22-7.46(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

8-B enzyl-8-azabicyclo[3.2.1]octan-3-one 5^{10}

A cetonedicarboxylic acid ($17.6 \mathrm{~g}, 0.121 \mathrm{~mol}$) was added to a solution of butanedial (0.121 mol ; prepared from 2,5dimethoxytetrahydrofuran and $10 \% \mathrm{HCl}$) and benzylamine hydrochloride ($20.8 \mathrm{~g}, 0.145 \mathrm{~mol}$) in water ($100 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$, after which 10% aqueous AcON a ($54 \mathrm{~cm}^{3}$) was added to the
reaction mixture. The mixture was stirred for 1 h at room temperature, and then for 2 h at $50^{\circ} \mathrm{C}$. A fter this the reaction mixture was adjusted to pH 2 with 10% aqueous HCl and washed with $\mathrm{Et}_{2} \mathrm{O}\left(20 \mathrm{~cm}^{3} \times 6\right)$; the aqueous layer was then adjusted to pH 6 with NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $\left(20 \mathrm{~cm}^{3} \times 10\right)$. The organic extracts were dried and evaporated to give a pale orange paste, which was taken up in hot $\mathrm{Et}_{2} \mathrm{O}$ ($20 \mathrm{~cm}^{3} \times 10$). The organic extracts were evaporated, and the residue was purified by distillation under reduced pressure [bp $175-180^{\circ} \mathrm{C}, 0.8 \mathrm{mmHg}\left(\right.$ lit. $\left.\left.,^{10} \mathrm{bp} 120^{\circ} \mathrm{C}, 0.2 \mathrm{mmH} \mathrm{g}\right)\right]$ to afford 5 (20.3 g, 78\%) as a colourless paste; $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 1697$; $\delta 1.60-1.82\left(2 \mathrm{H}, \mathrm{m}\right.$, ring $\left.\mathrm{CH}_{2}\right), 1.85-2.33\left(4 \mathrm{H}, \mathrm{m}\right.$, ring CH_{2} and $\left.\mathrm{COCH}_{2 \text { eq }}\right), 2.48-2.97\left(2 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2 \mathrm{ax}}\right), 3.38-3.65$ $(2 \mathrm{H}, \mathrm{br}, \mathrm{NCH}), 3.85\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}_{2} \mathrm{Ar}\right)$ and 7.10-7.56 ($5 \mathrm{H}, \mathrm{m}$, ArH)

10-Benzyl-10-azabicyclo[4.3.1]decan-3-one 6

A cetonedicarboxylic acid ($8.1 \mathrm{~g}, 66.3 \mathrm{mmol}$) was added to a solution of hexanedial ($6.3 \mathrm{~g}, 55.2 \mathrm{mmol}$; prepared from the ozonolysis of cyclohexene) and benzylamine hydrochloride (9.5 $\mathrm{g}, 55.2 \mathrm{mmol}$) in water ($25 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$; 10% aqueous AcONa $\left(40 \mathrm{~cm}^{3}\right)$ was then added to the reaction mixture. A fter this it was stirred for 1 h at room temperature, and then for 4 h at $50^{\circ} \mathrm{C}$. The reaction mixture was then adjusted to pH 2 with 10% aqueous HCl and washed with $\mathrm{Et}_{2} \mathrm{O}\left(50 \mathrm{~cm}^{3} \times 3\right)$; the aqueous layer was then adjusted to pH 6 with NaHCO_{3} and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3} \times 7\right)$. The organic extracts were dried and evaporated to give a pale orange paste, which was taken up in hot $\mathrm{Et}_{2} \mathrm{O}\left(15 \mathrm{~cm}^{3} \times 10\right)$. The organic extracts were evaporated and the residue was purified by distillation under reduced pressure (bp $190-193^{\circ} \mathrm{C}, 0.8 \mathrm{mmHg}$) to afford 6 $(6.7 \mathrm{~g}, 50 \%)$ as a colourless paste (Found: $\mathrm{M}^{+}, 243.1602$. $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NO}$ requires $\mathrm{M}, 243.1622$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1686 ; \delta_{\mathrm{H}}$ 1.41-1.52 (4 H, m, ring CH C_{2}), 1.74-1.91 ($4 \mathrm{H}, \mathrm{m}$, ring CH_{2}), $2.17\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 13, \mathrm{COCH}_{2 \text { eq }}\right.$), $2.70(2 \mathrm{H}, \mathrm{dd}, \mathrm{J} 13$ and 6.5 , $\left.\mathrm{COCH}_{2 \mathrm{ax}}\right), 3.46(2 \mathrm{H}, \mathrm{m}, \mathrm{NCH}), 3.95\left(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH} \mathrm{H}_{2} \mathrm{Ar}\right)$ and 7.22-7.42 (5 H , m, A rH).

M ethyl 3-oxo-9-azabicyclo[3.3.1]nonane-9-carboxylate 1

To a stirred solution of $4(8.0 \mathrm{~g}, 34.9 \mathrm{mmol})$ in acetic acid (40 cm^{3}) was added $5 \% \mathrm{Pd}-\mathrm{C}(1.0 \mathrm{~g})$, and the resulting suspension was stirred for 2 days at $60^{\circ} \mathrm{C}$ under a hydrogen atmosphere. A fter filtration of the reaction mixture through a Celite pad, 10% aqueous $\mathrm{HCl}\left(42 \mathrm{~cm}^{3}\right)$ was added to the filtrate, and the resulting mixture was evaporated to afford the amine hydrochloride (6.1 g). To a solution of the amine hydrochloride (6.1 g) obtained above in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(100 \mathrm{~cm}^{3}\right)-\mathrm{H}_{2} \mathrm{O}\left(100 \mathrm{~cm}^{3}\right)$ were added 10% aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}\left(100 \mathrm{~cm}^{3}\right)$ and $\mathrm{CICO}_{2} \mathrm{M} \mathrm{e}\left(4.5 \mathrm{~cm}^{3}\right.$, 65.8 mmol) at $0^{\circ} \mathrm{C}$; the reaction mixture was then stirred for 40 h at room temperature. A fter separation of the organic layer, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3} \times 5\right)$. The organic extracts were combined, dried and evaporated to give a pale yellow viscous oil, which was purified by column chromatography on $\mathrm{SiO}_{2}(60 \mathrm{~g}$, hexane-acetone, $10: 1$) to afford 1 ($6.19 \mathrm{~g}, 91 \%$ from 4) as a colourless solid. A n analytical sample was prepared by recrystallisation (cyclohexane). Colourless crystals, mp $66-67^{\circ} \mathrm{C}$ (Found: C, $60.78 ; \mathrm{H}, 7.59 . \mathrm{C}_{10} \mathrm{H}_{15} \mathrm{~N} \mathrm{O}_{3}$ requires $\mathrm{C}, 60.89 ; \mathrm{H}, 7.67 \%) ; v_{\max }(\mathrm{K} \mathrm{Br}) / \mathrm{cm}^{-1} 1702 ; \delta_{\mathrm{H}} 1.48-1.74$ $\left(6 \mathrm{H}, \mathrm{m}\right.$, ring $\left.\mathrm{CH}_{2}\right), 2.38\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J}, \mathrm{COCH}_{2 \text { eq }}\right), 2.52-2.69(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{COCH}_{2 a x}\right), 3.74\left(3 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{3}\right), 4.66(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NCH})$ and $4.77(1 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{NCH})$. The benzyl urethane corresponding to compound $\mathbf{1}$ was also prepared from the parent amine hydrochloride according to the same procedure using $\mathrm{CICO}_{2} \mathrm{Bn}$ instead of $\mathrm{ClCO}_{2} \mathrm{M}$ e in 96% yield as a colourless paste (Found: M^{+}, 273.1359. $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{NO}_{3}$ requires M , 273.1365); $v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) /$ $\mathrm{cm}^{-1} 1705$ and 1690; $\delta_{\mathrm{H}} 1.51-1.87\left(6 \mathrm{H}, \mathrm{m}\right.$, ring CH_{2}), 2.37 and $2.40\left(2 \mathrm{H}\right.$, each d, J $16.5, \mathrm{COCH}_{\text {2eq }}$ due to rotamers), 2.58 and $2.66\left(2 \mathrm{H}\right.$, each dd, J 16.5 and $7, \mathrm{COCH}_{2 a x}$, due to rotamers), 4.73 and $4.80(2 \mathrm{H}$, each br s), $5.19(2 \mathrm{H}, \mathrm{s})$ and 7.22 ($5 \mathrm{H}, \mathrm{br}$).

Benzyl 3-oxo-8-azabicyclo[3.2.1]octane-8-carboxylate 2

To a stirred solution of $5(20.3 \mathrm{~g}, 94.6 \mathrm{mmol})$ in acetic acid (120 cm^{3}) was added $5 \% \mathrm{Pd}-\mathrm{C}(2.0 \mathrm{~g})$, and the resulting suspension was stirred for 3 days at $60^{\circ} \mathrm{C}$ under a hydrogen atmosphere. A fter filtration of the reaction mixture through a Celite pad, 10% aqueous $\mathrm{HCl}\left(100 \mathrm{~cm}^{3}\right)$ was added to the filtrate, and the resulting mixture was evaporated to afford the amine hydrochloride (15.2 g). To a solution of the amine hydrochloride (1.2 g) obtained above in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(30 \mathrm{~cm}^{3}\right)-\mathrm{H}_{2} \mathrm{O}\left(30 \mathrm{~cm}^{3}\right)$ were added 10% aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}\left(30 \mathrm{~cm}^{3}\right)$ and $\mathrm{ClCO}_{2} \mathrm{Bn}\left(2.2 \mathrm{~cm}^{3}, 15.4\right.$ mmol) at $0^{\circ} \mathrm{C}$; the reaction mixture was then stirred for 8 h at room temperature. A fter separation of the organic layer, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3} \times 5\right)$. The organic extracts were combined, dried and evaporated to give a pale yellow viscous oil, which was purified by column chromatography on SiO_{2} (20 g; hexane-acetone, 10:1) to afford 2 (1.7 $\mathrm{g}, 91 \%$ from 5) as a colourless paste. A n analytical sample was prepared by distillation under reduced pressure (bp $145-150^{\circ} \mathrm{C}$, 0.6 mmHg (Found: M^{+}, 259.1211. $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{3}$ requires M , 259.1207); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}$ 1698; $\delta_{\mathrm{H}} 1.62-1.75(2 \mathrm{H}, \mathrm{m}$, ring $\left.\mathrm{CH}_{2}\right)$, 2.05-2.19 (2 H, m, ring $\left.\mathrm{CH}_{2}\right), 2.35(2 \mathrm{H}, \mathrm{d}$, J 17 , $\mathrm{COCH} \mathrm{zeq}^{2}$), 2.48-2.84 ($2 \mathrm{H}, \mathrm{br}, \mathrm{COCH}_{2 a x}$), $4.58(2 \mathrm{H}, \mathrm{s}, \mathrm{NCH}$), $5.19(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH} 2 \mathrm{Ar})$ and $7.32-7.40(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

Benzyl 3-oxo-10-azabicyclo[4.3.1]decane-10-carboxylate 3

To a stirred solution of $6(1.97 \mathrm{~g}, 8.17 \mathrm{mmol})$ in acetic acid (20 cm^{3}) was added $5 \% \mathrm{Pd}-\mathrm{C}(0.4 \mathrm{~g})$, and the resulting suspension was stirred for 3 days at $60^{\circ} \mathrm{C}$ under a hydrogen atmosphere A fter filtration of the reaction mixture through a Celite pad, 10% aqueous $\mathrm{HCl}\left(42 \mathrm{~cm}^{3}\right)$ was added to the filtrate, and the resulting mixture was evaporated to afford the amine hydrochloride (1.45 g). To a solution of the aminehydrochloride (530 mg) obtained above in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(12 \mathrm{~cm}^{3}\right)-\mathrm{H}_{2} \mathrm{O}\left(12 \mathrm{~cm}^{3}\right)$ were added 10% aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}\left(12 \mathrm{~cm}^{3}\right)$ and $\mathrm{CICO}_{2} \mathrm{Bn}\left(0.95 \mathrm{~cm}^{3}\right.$, 5.6 mmol) at $0^{\circ} \mathrm{C}$, and the reaction mixture was stirred for 21 h at room temperature. A fter separation of the organic layer, the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3} \times 5\right)$. The organic extracts were combined, dried and evaporated to give a pale yellow viscous oil, which was purified by column chromatography on SiO_{2} (30 g ; hexane-acetone, $10: 1$) to afford $\mathbf{3}$ (722 $\mathrm{mg}, 90 \%$ from 5) as a colourless paste. A n analytical samplewas prepared by distillation under reduced pressure (bp $170-174^{\circ} \mathrm{C}$, 0.4 mmHg) (Found: M^{+}, 287.1519. $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NO}_{3}$ requires M , 287.1520); $v_{\text {max }}(n e a t) / \mathrm{cm}^{-1} 1690 ; \delta_{\mathrm{H}} 1.36-1.61(6 \mathrm{H}, \mathrm{m}$, ring CH_{2}), 1.91-2.20 ($2 \mathrm{H}, \mathrm{m}$, ring CH_{2}), 2.26-2.41 $(2 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{COCH}_{2 e q}\right), 2.57-2.75\left(2 \mathrm{H}, \mathrm{m}, \mathrm{COCH}_{2 a x}\right), 4.80-4.89(1 \mathrm{H}, \mathrm{m}$, NCH), 4.90-5.05 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}$) $5.16\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 6, \mathrm{OCH}_{2} \mathrm{Ar}\right)$ and $7.26-7.37(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$.

M ethyl (1S,5R)-(-)-3-trimethylsiloxy-9-azabicyclo[3.3.1]non-2-ene-9-carboxylate 8

To a stirred solution of the amine $\mathbf{7}^{7}(3.2 \mathrm{~g}, 11.0 \mathrm{mmol})$ in TH F ($50 \mathrm{~cm}^{3}$) was added BuLi ($10 \% \mathrm{w} / \mathrm{v}$ in hexane; $7.1 \mathrm{~cm}^{3}$) and HM PA ($3.8 \mathrm{~cm}^{3}, 22.1 \mathrm{mmol}$) at $-100^{\circ} \mathrm{C}$; the resulting mixture was warmed to room temperature for 1 h and then recooled to $-100{ }^{\circ} \mathrm{C}$. To the cooled mixture were added $\mathrm{M} \mathrm{e}_{3} \mathrm{SiCl}\left(2.8 \mathrm{~cm}^{3}\right.$, $22.1 \mathrm{mmol})$ and then $\mathbf{1}(1.45 \mathrm{~g}, 7.36 \mathrm{mmol})$ in THF $\left(10 \mathrm{~cm}^{3}\right)$ at $-100^{\circ} \mathrm{C}$, and the reaction mixture was stirred for 2 h at $-100^{\circ} \mathrm{C}$. The reaction was quenched by the addition of saturated aqueous $\mathrm{NaHCO}_{3}\left(20 \mathrm{~cm}^{3}\right)$ to the mixture, after which the aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (15 $\left.\mathrm{cm}^{3} \times 5\right)$. The organic extracts were combined, dried and evaporated to give a pale yellow oil, which was purified by column chromatography on $\mathrm{SiO}_{2}(30 \mathrm{~g}$; hexane-acetone, $50: 1)$ to afford 8 ($1.8 \mathrm{~g}, 94 \%$) as a colourless oil (Found: $\mathrm{M}^{+}, 269.1452$. $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{NO}_{3} \mathrm{Si}$ requires $\mathrm{M}, 269.1447$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1700$ and 1669; $\delta_{\mathrm{H}} 0.18$ ($9 \mathrm{H}, \mathrm{s}, \mathrm{SiM} \mathrm{e}_{3}$), 1.33-1.97 [7 H, m, ring CH_{2} and $\left.=\mathrm{C}\left(\mathrm{OSiM} \mathrm{e}_{3}\right) \mathrm{CH}_{2}\right], 2.40-2.63\left[1 \mathrm{H}, \mathrm{br},=\mathrm{C}\left(\mathrm{OSiM}_{3}\right) \mathrm{CH}_{2}\right], 3.68$ (3 $\mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}$) and 4.40-4.89 ($3 \mathrm{H}, \mathrm{m},=\mathrm{CH}$ and NCH); $[a]_{0}^{26}$ -16.8 (c $1.35, \mathrm{CHCl}_{3}$).

Benzyl (1S,5R)-(-)-3-trimethylsiloxy-8-azabicyclo[3.2.1]oct-2-ene-8-carboxylate 9

To a stirred solution of the amine $\boldsymbol{7}^{7}(1.85 \mathrm{~g}, 6.4 \mathrm{mmol})$ in TH F ($50 \mathrm{~cm}^{3}$) were added BuLi ($10 \% \mathrm{w} / \mathrm{v}$ in hexane; $4.0 \mathrm{~cm}^{3}$) and H M PA ($2.2 \mathrm{~cm}^{3}, 12.6 \mathrm{mmol}$) at $-100^{\circ} \mathrm{C}$, and the resulting mixture was warmed to room temperature for 1 h ; it was then recooled to $-100^{\circ} \mathrm{C}$. To the cooled mixture were added $\mathrm{M} \mathrm{e} \mathrm{e}_{3} \mathrm{Si}$ $\mathrm{Cl}\left(1.6 \mathrm{~cm}^{3}, 12.6 \mathrm{mmol}\right)$ and then $2(1.1 \mathrm{~g}, 4.24 \mathrm{mmol})$ in THF $\left(10 \mathrm{~cm}^{3}\right)$ at $-100^{\circ} \mathrm{C}$, and the reaction mixture was stirred for 2 h at $-100^{\circ} \mathrm{C}$. The reaction was quenched by the addition of saturated aqueous $\mathrm{NaHCO}_{3}\left(20 \mathrm{~cm}^{3}\right)$ to the mixture, after which the aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (15 $\mathrm{cm}^{3} \times 5$). The combined organic extracts were dried and evaporated to give a pale yellow oil, which was purified by column chromatography on $\mathrm{SiO}_{2}(30 \mathrm{~g}$; hexane-acetone, $50: 1)$ to afford 9 (1.25 g, 89\%) as a colourless oil (Found: $\mathrm{M}^{+}, 331.1596$. $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{Si}$ requires $\mathrm{M}, 331.1602$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1705$ and $1650 ; \delta_{\mathrm{H}} 0.06\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiM} \mathrm{e}_{3}\right), 1.58-1.88\left(4 \mathrm{H}, \mathrm{m}\right.$, ring CH_{2}), 2.34 [1 H, br d, J 5.5, $=\mathrm{C}\left(\mathrm{OSiM} \mathrm{e}_{3}\right) \mathrm{CH}_{2}$], $2.40[1 \mathrm{H}, \mathrm{br}$ d, J 5.5 , $=\mathrm{C}\left(\mathrm{OSiM}_{3}\right) \mathrm{CH}_{2}$], 4.69-4.83 $(3 \mathrm{H}, \mathrm{m},=\mathrm{CH}$ and NCH $), 5.22(2$ $\left.\mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ar}\right), 7.29-7.43(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $[a]_{\mathrm{D}}^{26}-22.1$ (c 1.38, CHCl_{3}).

Benzyl (1S,5R)-3-trimethylsiloxy-10-azabicyclo[4.3.1]dec-2-ene-10-carboxylate 10

To a stirred solution of the amine $7^{7}(300 \mathrm{mg}, 1.04 \mathrm{mmol})$ in THF ($10 \mathrm{~cm}^{3}$) were added BuLi ($10 \% \mathrm{w} / \mathrm{v}$ in hexane; $0.7 \mathrm{~cm}^{3}$) and H M PA ($0.37 \mathrm{~cm}^{3}, 2.09 \mathrm{mmol}$) at $-100^{\circ} \mathrm{C}$, and the resulting mixture was warmed to room temperature for 1 h ; it was then recooled to $-100^{\circ} \mathrm{C}$. To the cooled mixture were added $\mathrm{M} e_{3} \mathrm{Si}$ $\mathrm{Cl}\left(0.27 \mathrm{~cm}^{3}, 2.09 \mathrm{mmol}\right)$ and then $3(200 \mathrm{mg}, 0.69 \mathrm{mmol})$ in TH F $\left(3 \mathrm{~cm}^{3}\right)$ at $-100^{\circ} \mathrm{C}$; the reaction mixture was then stirred for 2 h at $-100^{\circ} \mathrm{C}$. The reaction was quenched by the addition of saturated aqueous $\mathrm{NaHCO}_{3}\left(100 \mathrm{~cm}^{3}\right)$ to the mixture, after which the aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}$ $\left(10 \mathrm{~cm}^{3} \times 3\right)$. The combined organic extracts were dried and evaporated to give a pale yellow oil, which was purified by column chromatography on SiO_{2} (5 g , hexane-acetone, $50: 1$) to afford 10 ($189 \mathrm{mg}, 75 \%$) as a colourless oil (Found: M^{+}, 359.1065. $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{~N} \mathrm{O}_{3} \mathrm{Si}$ requires $\mathrm{M}, 359.1055$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ 1700 and 1676; $\delta_{\mathrm{H}} 0.20\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiM} \mathrm{e} \mathrm{e}_{3}\right.$), 0.99-1.87 ($8 \mathrm{H}, \mathrm{m}$, ring $\left.\mathrm{CH}_{2}\right), 2.25-2.48\left[2 \mathrm{H}, \mathrm{m},=\mathrm{C}\left(\mathrm{OSiM} \mathrm{e}_{3}\right) \mathrm{CH}_{2}\right.$], 4.67-4.74 (3 H , m, $=\mathrm{CH}$ and NCH), $5.18\left(2 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{OCH}_{2} \mathrm{Ar}\right)$ and $7.26-7.35(5 \mathrm{H}$, m, ArH).

M ethyl (2R,6S)-(-)-6-hydroxymethyl-1-methoxycarbonyl-piperidin-2-ylethanoate 11

Ozone was bubbled through a stirred solution of $8(3.67 \mathrm{~g}, 13.6$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{M} \mathrm{eOH}\left(10: 1 ; 33 \mathrm{~cm}^{3}\right)$ at $-78{ }^{\circ} \mathrm{C}$ for 20 min , after which the excess of O_{3} was eliminated by passage of a flow of argon through the solution; $\mathrm{NaBH}_{4}(1.04 \mathrm{~g}, 27.2 \mathrm{mmol})$ was then added to it at $-78^{\circ} \mathrm{C}$. A fter this the reaction mixture was warmed to room temperature and stirred for 2 h . It was then treated with 10% aqueous $\mathrm{HCl}\left(5 \mathrm{~cm}^{3}\right)$, and the aqueous layer was saturated with NaCl . The aqueous layer was separated and extracted with $\mathrm{CHCl}_{3}\left(10 \mathrm{~cm}^{3} \times 5\right)$, and the organic layer and extracts were combined, dried and evaporated to give a viscous oil, which was used directly in the next step. To a stirred solution of the viscous oil in $\mathrm{Et}_{2} \mathrm{O}\left(150 \mathrm{~cm}^{3}\right)$ was added $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in $\mathrm{Et}_{2} \mathrm{O}$, at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 3 h . The excess of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ was destroyed with AcOH , and the mixture was evaporated to give a viscous oil, which was purified by column chromatography on $\mathrm{SiO}_{2}\left(120 \mathrm{~g}\right.$; hexane- $\left.\mathrm{Et}_{2} \mathrm{O}, 1: 2\right)$ to afford $\mathbf{1 1}(2.33 \mathrm{~g}, 60 \%)$ as a viscous oil (Found: M ${ }^{+}, 245.2357$. $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{5}$ requires $\mathrm{M}, 245.2375$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3449,1736$ and 1692; $\delta_{\mathrm{H}} 1.61-2.53\left(6 \mathrm{H}, \mathrm{m}\right.$, ring CH I_{2}), $2.50[1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 17$ and $\left.14, \mathrm{C}(\mathrm{H}) \mathrm{HCO}_{2} \mathrm{M} \mathrm{e}\right], 2.61[1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 17$ and $14, \mathrm{C}(\mathrm{H}) \mathrm{H}-$ $\mathrm{CO}_{2} \mathrm{Me}$], $3.63\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 7, \mathrm{CH}_{2} \mathrm{OH}\right), 3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right.$), $3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCO}_{2} \mathrm{M} \mathrm{e}\right)$, 4.34-4.45 ($1 \mathrm{H}, \mathrm{m}, \mathrm{N} \mathrm{CH}$) and 4.64-4.75 ($1 \mathrm{H}, \mathrm{brm}, \mathrm{NCH}$); $[a]_{\mathrm{D}}^{26}-4.4\left(\mathrm{c} 1.05, \mathrm{CHCl}_{3}\right)$.

M ethyl (2R,5S)-(-)-1-benzyloxycarbonyl-5-hydroxymethyl-pyrrolidin-2-ylethanoate 12

Ozone was bubbled through a stirred solution of $9(1.20 \mathrm{~g}, 3.62$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\left(10: 1 ; 16.5 \mathrm{~cm}^{3}\right.$) at $-78^{\circ} \mathrm{C}$ for 20 min , after which the excess of O_{3} was eliminated by passage of a flow of argon through the solution; $\mathrm{NaBH}_{4}(276 \mathrm{mg}, 7.24$ mmol) was then added to it at $-78^{\circ} \mathrm{C}$. The reaction mixture was then warmed to room temperature and stirred for 2 h . A fter this the mixture was treated with 10% aqueous $\mathrm{HCl}\left(5 \mathrm{~cm}^{3}\right)$, and the aqueous layer was saturated with NaCl . The aqueous layer was separated and extracted with $\mathrm{CHCl}_{3}\left(10 \mathrm{~cm}^{3} \times 5\right)$, and the organic layer and extracts were combined, dried and evaporated to give a viscous oil, which was used directly in the next step. To a stirred solution of the viscous oil obtained above in $\mathrm{Et}_{2} \mathrm{O}$ (40 cm^{3}) was added $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in $\mathrm{Et}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 3 h . The excess of $\mathrm{CH}_{2} \mathrm{~N}_{2}$ was destroyed with ACOH , and the mixture was evaporated to give a viscous oil, which was purified by column chromatography on $\mathrm{SiO}_{2}\left(60 \mathrm{~g}\right.$; hexane- $\mathrm{Et}_{2} \mathrm{O}, 1: 2$) to afford 12 ($663 \mathrm{mg}, 60 \%$) as a viscous oil (Found: M^{+}, 307.1459. $\mathrm{C}_{16} \mathrm{H}_{21} \mathrm{NO}_{5}$ requires M , 307.1419); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3450,1737$ and 1698; δ_{H} 1.72-2.00 (4 H, m, ring $\left.\mathrm{CH}_{2}\right), 2.40\left[1 \mathrm{H}, \mathrm{br}, \mathrm{C}(\mathrm{H}) \mathrm{HCO}_{2} \mathrm{Me} \mathrm{e}, 2.70[1 \mathrm{H}, \mathrm{br}\right.$, $\mathrm{C}(\mathrm{H}) \mathrm{HCO}_{2} \mathrm{M} \mathrm{e}$], $3.55\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CO}_{2} \mathrm{Me}\right)$, $3.87-4.05(2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{OH}$), 4.07-4.22 ($1 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{NCH}$), 4.24-4.42 ($1 \mathrm{H}, \mathrm{br}$ m, NCH), 5.12 and 5.16 (each 1 H , each $d, \mathrm{~J} 17, \mathrm{OCH}_{2} \mathrm{Ar}$) and $7.40(5 \mathrm{H}, \mathrm{br} \mathrm{s}, \mathrm{ArH}) ;[a]_{\mathrm{D}}^{26}-12.3$ ($\mathrm{c} 1.24, \mathrm{CHCl}_{3}$).

M ethyl (2R,7S)-(-)-1-benzyloxycarbonyl-7-hydroxymethyl-hexahydroazepin-2-ylethanoate 13

Ozone was bubbled through a stirred solution of $10(120 \mathrm{mg}$, 0.334 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{M} \mathrm{eOH}\left(10: 1 ; 2.2 \mathrm{~cm}^{3}\right)$ at $-78^{\circ} \mathrm{C}$ for 20 min , after which the excess of O_{3} was eliminated by passage of a flow of argon through the solution. $\mathrm{NaBH}_{4}(25 \mathrm{mg}, 0.67 \mathrm{mmol})$ was added to the mixture at $-78^{\circ} \mathrm{C}$, after which it was warmed to room temperature and stirred for 2 h . The mixture was then treated with 10% aqueous $\mathrm{HCl}\left(2 \mathrm{~cm}^{3}\right)$ and the aqueous layer was saturated with NaCl . The aqueous layer was separated and extracted with $\mathrm{CHCl}_{3}\left(5 \mathrm{~cm}^{3} \times 5\right)$, and the organic layer and extracts were combined, dried and evaporated to give a viscous oil, which was used directly in the next step. To a stirred solution of the viscous oil obtained above in $\mathrm{Et}_{2} \mathrm{O}\left(5 \mathrm{~cm}^{3}\right)$ was added $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in $\mathrm{Et}_{2} \mathrm{O}$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred at room temperature for 3 h . The excess $\mathrm{CH}_{2} \mathrm{~N}_{2}$ was destroyed with AcOH , and the mixture was evaporated to give a viscous oil, which was purified by column chromatography on $\mathrm{SiO}_{2}(3 \mathrm{~g}$; hexane- $\mathrm{Et}_{2} \mathrm{O}, 1: 2$) to afford $\mathbf{1 1}(84.1 \mathrm{mg}, 75 \%)$ as a viscous oil (Found: $\mathrm{M}^{+}, 335.1752 . \mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{5}$ requires $\mathrm{M}, 335.1732$); $v_{\text {max }}$ (neat)/cm ${ }^{-1} 3442,1737$ and 1690; δ_{H} 1.34-1.89 ($8 \mathrm{H}, \mathrm{m}$, ring $\left.\mathrm{CH}_{2}\right), 2.52\left[1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 10\right.$ and $\left.5.5, \mathrm{C}(\mathrm{H}) \mathrm{HCO}_{2} \mathrm{M} \mathrm{e}\right], 2.87[1 \mathrm{H}, \mathrm{br}$, $\left.\mathrm{C}(\mathrm{H}) \mathrm{HCO}_{2} \mathrm{M} \mathrm{e}\right), 3.65-3.80\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right), 3.81-3.95(1 \mathrm{H}$, m, NCH), 4.14-4.43 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}$), 5.10 and 5.14 (each 1 H , each $\mathrm{d}, \mathrm{J} 5, \mathrm{OCH}_{2} \mathrm{Ar}$) and $7.27-7.35(5 \mathrm{H}, \mathrm{m}, \mathrm{ArH})$; $[a]_{\mathrm{D}}^{26}$ -19.8 (c $2.75, \mathrm{CHCl}_{3}$).

M ethyl (2R ,6S)-(+)-6-(1,3-dithiolan-2-yl)-1-methoxycarbonyl-piperidin-2-ylethanoate 15

To a stirred solution of $(\mathrm{COCl})_{2}\left(0.068 \mathrm{~cm}^{3}, 0.78 \mathrm{mmol}\right)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(8 \mathrm{~cm}^{3}\right)$ was added DM SO ($0.11 \mathrm{~cm}^{3}, 1.56 \mathrm{mmol}$) at $-78{ }^{\circ} \mathrm{C}$, and the resulting mixture was stirred for 10 min ; compound 11 ($127 \mathrm{mg}, 0.52 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$ was then added to the mixture. A fter being stirred for 45 min , the mixture was treated with $\mathrm{Et}_{3} \mathrm{~N}\left(0.34 \mathrm{~cm}^{3}, 2.33 \mathrm{mmol}\right)$, added at $-78{ }^{\circ} \mathrm{C}$; the temperature was then allowed gradually to rise to $0^{\circ} \mathrm{C}$. A fter this $\mathrm{Et}_{2} \mathrm{O}\left(15 \mathrm{~cm}^{3}\right)$ and water ($5 \mathrm{~cm}^{3}$) were added to the reaction mixture, and the organic layer was separated and washed with water ($5 \mathrm{~cm}^{3} \times 2$), dried and evaporated to give a colourless oil. This was used directly in the next step. To a stirred solution of the aldehyde obtained above in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 cm^{3}) were added ethanedithiol ($0.051 \mathrm{~cm}^{3}, 0.61 \mathrm{mmol}$) and $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}\left(0.074 \mathrm{~cm}^{3}, 0.61 \mathrm{mmol}\right)$ at $0^{\circ} \mathrm{C}$, and the resulting
mixture was stirred for 12 h at room temperature The reaction was quenched by the addition of saturated aqueous NaHCO_{3} ($3 \mathrm{~cm}^{3}$) to the mixture; the aqueous layer was then separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3} \times 3\right)$. The organic layer and extracts were combined, dried and evaporated to give a colourless oil, which was purified by column chromatography on SiO_{2} (10 g; hexane-acetone, 15:1) to afford 15 ($120 \mathrm{mg}, 73 \%$ from 11) as a colourless oil (Found: C, 48.61; H, 6.52. $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}_{2}$ requires $\mathrm{C}, 48.88 ; \mathrm{H}, 6.63 \%$); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1}$ 1738 and $1694 ; \delta_{\mathrm{H}} 1.50-2.00\left(6 \mathrm{H}, \mathrm{m}\right.$, ring $\left.\mathrm{CH}_{2}\right), 2.58[1 \mathrm{H}$, dd, $J 15.5$ and $11.5, \mathrm{C}(\mathrm{H}) \mathrm{HCO}_{2} \mathrm{M}$ e], $2.72[1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15.5$ and 14 , $\mathrm{C}(\mathrm{H}) \mathrm{HCO}_{2} \mathrm{M}$ e], 3.10-3.38 ($\left.4 \mathrm{H}, \mathrm{m}, \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{~S}\right), 3.69(3 \mathrm{H}, \mathrm{s}$, $\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{M} \mathrm{e}$), $3.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCO}_{2} \mathrm{Me}\right.$), $4.42(1 \mathrm{H}, \mathrm{br}, \mathrm{NCH})$, 4.59 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J} 11, \mathrm{SCHS}$) and $4.68(1 \mathrm{H}, \mathrm{br}, \mathrm{NCH}) ;[a]_{\mathrm{D}}^{26}+3.3$ ($\mathrm{c} 0.42, \mathrm{CHCl}_{3}$).

M ethyl (2R ,6R)-(-)-6-methyl-1-methox ycarbonylpiperidin-2ylethanoate 16

To a stirred solution of $\mathbf{1 5}$ ($700 \mathrm{mg}, 2.19 \mathrm{mmol}$) in EtOH (5 cm^{3}) was added Raney $\mathrm{Ni}(\mathrm{W}-4,300 \mathrm{mg}$), and the resulting suspension was refluxed for 1 h . A fter cooling, the mixture was filtered through a Celite pad to remove the catalyst, and the filtrate was evaporated to give a colourless oil, which was purified by column chromatography on SiO_{2} (20 g ; hexane-acetone, $50: 1$) to afford 16 ($433 \mathrm{mg}, 86 \%$) as a colourless oil (Found: M^{+}, 229.1283. $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{4}$ requires $\mathrm{M}, 229.1313$); $v_{\text {max }}$ (neat)/ $\mathrm{cm}^{-1} 1739$ and 1698; $\delta_{\mathrm{H}} 1.17(3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7, \mathrm{Me}), 1.46-1.72(6 \mathrm{H}$, m, ring CH_{2}), $2.53\left[1 \mathrm{H}, \mathrm{dd}, \mathrm{J} 15\right.$ and $5, \mathrm{C}(\mathrm{H}) \mathrm{HCO}_{2} \mathrm{M} \mathrm{e}$], $2.65[1$ H , dd, J 15 and $10, \mathrm{C}(\mathrm{H}) \mathrm{HCO}_{2} \mathrm{M} \mathrm{e]}, 3.67\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{M} \mathrm{e}\right)$, $3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCO}_{2} \mathrm{Me}\right), 4.32(1 \mathrm{H}, \mathrm{br}, \mathrm{NCH})$ and $4.61(1 \mathrm{H}, \mathrm{br}$, NCH); $[a]_{0}^{26}-37.8\left(\mathrm{c} 0.95, \mathrm{CHCl}_{3}\right.$).

M ethyl (2R,6R)-2-methyl-6-(prop-2-enyl)piperidine-1-carboxylate 17

To a stirred solution of $\mathbf{1 6}(332 \mathrm{mg}, 1.45 \mathrm{mmol})$ in TH F ($5 \mathrm{~cm}^{3}$) was added Super-H ydride (1 m in THF; $3.19 \mathrm{~cm}^{3}, 3.19 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the reaction mixture was stirred at room temperature for 1 h . It was then diluted with water $\left(5 \mathrm{~cm}^{3}\right.$) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 cm^{3}), and the aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(5 \mathrm{~cm}^{3} \times 5\right)$. The organic layer and extracts were combined, dried and evaporated to give a colourless oil, which was used directly in the next step. To a stirred solution of $(\mathrm{COCI})_{2}$ ($0.044 \mathrm{~cm}^{3}, 0.524 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(4 \mathrm{~cm}^{3}\right)$ was added DM SO ($0.074 \mathrm{~cm}^{3}, 1.05 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$ and the mixture was stirred for 10 min . To the resulting mixture was added the alcohol (70 mg) obtained above in $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2 \mathrm{~cm}^{3}\right)$ at $-78{ }^{\circ} \mathrm{C}$, and the mixture was stirred for 45 min . To the mixture was added $\mathrm{Et}_{3} \mathrm{~N}$ ($0.22 \mathrm{~cm}^{3}, 1.57 \mathrm{mmol}$) at $-78^{\circ} \mathrm{C}$, and the reaction temperature was raised to $0^{\circ} \mathrm{C}$. The mixture was then diluted with water (5 cm^{3}) and $\mathrm{Et}_{2} \mathrm{O}\left(15 \mathrm{~cm}^{3}\right)$. The organic layer was separated, washed with water ($5 \mathrm{~cm}^{3} \times 2$), dried and evaporated to give a colourless oil, which was used directly in the next step. To a stirred suspension of methyl(triphenyl)phosphonium iodide ($355 \mathrm{mg}, 0.88 \mathrm{mmol}$) in THF ($4 \mathrm{~cm}^{3}$) was added BuLi $(10 \% \mathrm{w} / \mathrm{v}$ in hexane; $0.54 \mathrm{~cm}^{3}$) at $0^{\circ} \mathrm{C}$, and the resulting orange-coloured solution was stirred at room temperature for 30 min . To the mixture was added the aldehyde (70 mg) obtained above in THF $\left(2 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$, and the reaction mixture was stirred at room temperature for 2 h . The reaction was quenched by the addition of water ($4 \mathrm{~cm}^{3}$) to the mixture, and the aqueous layer was separated and extracted with $\mathrm{Et}_{2} \mathrm{O}\left(10 \mathrm{~cm}^{3} \times 3\right)$. The organic layer and extracts were combined, dried and evaporated to give a pale yellow oil, which was purified by column chromatography on $\mathrm{SiO}_{2}(6 \mathrm{~g}$; hexane-acetone, $100: 1)$ to afford 17 (39 $\mathrm{mg}, 57 \%$ from 16) as a colourless oil (Found: $\mathrm{M}^{+}, 197.1420$. $\mathrm{C}_{11} \mathrm{H}_{19} \mathrm{NO}_{2}$ requires $\left.\mathrm{M}, 197.1415\right)$; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1701 ; \delta_{\mathrm{H}}$ 1.18 ($3 \mathrm{H}, \mathrm{d}, \mathrm{J} 7, \mathrm{Me}$), 1.42-1.76(6 H, m, ring CH 2), $2.32(2 \mathrm{H}$, dd , J $\left.7, \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}\right), 3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCO}_{2} \mathrm{Me}\right), 4.32(1 \mathrm{H}, \mathrm{br}$, $\mathrm{NCH}), 4.61(1 \mathrm{H}, \mathrm{br}, \mathrm{NCH}), 5.00-5.07\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}\right)$ and 5.66-5.84 ($1 \mathrm{H}, \mathrm{m}, \mathrm{CH}=\mathrm{CH}_{2}$).

(+)-D ihydropinidine hydrochloride 14

To a stirred solution of $17(39 \mathrm{mg})$ in $\mathrm{MeOH}\left(0.8 \mathrm{~cm}^{3}\right)$ was added $5 \% \mathrm{Pd}-\mathrm{C}(10 \mathrm{mg}$), and the resulting suspension was stirred for 9 h under a hydrogen atmosphere. The catalyst was filtered off, and the filtrate was evaporated to give a colourless oil, which was used directly in the next step. To a stirred solution of the oil (10 mg) obtained above in $\mathrm{CHCl}_{3}\left(0.4 \mathrm{~cm}^{3}\right)$ was added $\mathrm{M} \mathrm{e}_{3} \mathrm{Sil}\left(0.08 \mathrm{~cm}^{3}, 0.06 \mathrm{mmol}\right)$, and the mixture was stirred at room temperature for 3 h ; it was then evaporated to give a pale yellow paste To the paste was added a saturated solution of HCl in MeOH , and the mixture was evaporated. The residue was washed with $\mathrm{Et}_{2} \mathrm{O}$ and then with EtOAc to afford $\mathbf{1 4}(7.7 \mathrm{mg}, 87 \%)$ as a colourless solid. The IR and ${ }^{1} \mathrm{H}$ NM R spectral data were identical with those of an authentic sample, ${ }^{15}[a]_{0}^{26}+11.6$ (c 0.15 , EtOH) $\{\mathrm{lit} .)^{14}[a]_{D}^{25}+12.7$ (c, 1.07 $\mathrm{EtOH})$.

M ethyl (2S,6R)-(+)-2-(tert-butyldimethylsiloxymethyl)-6-(2-hydroxyethyl)piperidine-1-carboxylate 20

To a stirred solution of $11(2.0 \mathrm{~g}, 8.19 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30$ cm^{3}) were added TBSCI ($1.47 \mathrm{~g}, 12.3 \mathrm{mmol}$), DM AP (81 mg , $0.82 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}\left(2.7 \mathrm{~cm}^{3}, 24.6 \mathrm{mmol}\right)$ at $0^{\circ} \mathrm{C}$, and the reaction mixture was stirred at room temperature for 21 h . It was then diluted with $\mathrm{Et}_{2} \mathrm{O}\left(100 \mathrm{~cm}^{3}\right)$ and water ($5 \mathrm{~cm}^{3}$). The organic layer was separated, washed with saturated brine (10 $\mathrm{cm}^{3} \times 2$), dried and evaporated to give an oil, which was purified by column chromatography on $\mathrm{SiO}_{2}(50 \mathrm{~g}$; hexane-acetone, $50: 1$) to afford the silyl ether ($2.68 \mathrm{~g}, 90 \%$) as a colourless oil (Found: $\mathrm{M}^{+}-\mathrm{C}_{4} \mathrm{H}_{9}, 302.1424 . \mathrm{C}_{12} \mathrm{H}_{24} \mathrm{~N} \mathrm{O}_{4}$ Si requires $\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}$, 302.1424); $v_{\max }$ (neat)/cm ${ }^{-1} 1741$ and 1701; $\delta_{\mathrm{H}} 0.07(6 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{SiM} \mathrm{e}_{2}\right), 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu} \mathrm{t}^{\mathrm{t}}\right.$), 1.41-1.69 ($6 \mathrm{H}, \mathrm{m}$, ring CH_{2}), 3.48$3.60\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{OTBS}\right)$, $3.66(3 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{Me}\right), 3.69\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCO}_{2} \mathrm{Me}\right), 4.16(1 \mathrm{H}, \mathrm{br}, \mathrm{NCH})$ and 4.60 ($1 \mathrm{H}, \mathrm{br}, \mathrm{NCH}$); $[a]_{\mathrm{D}}^{26}-24.4$ (c 1.06, CHCl_{3}).

To a stirred solution of the silyl ether ($2.83 \mathrm{~g}, 7.8 \mathrm{mmol}$) in THF ($70 \mathrm{~cm}^{3}$) was added Super-H ydride ($15.6 \mathrm{~cm}^{3}, 15.6 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the resulting mixture was stirred for 2 h at room temperature. The reaction was quenched by the addition of water $\left(20 \mathrm{~cm}^{3}\right)$ to the mixture, and the aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(20 \mathrm{~cm}^{3} \times 5\right)$. The organic layer and extracts were combined, dried and evaporated to give a colourless oil, which was purified by column chromatography on SiO_{2} (90 g; hexane-acetone, $10: 1$) to afford $20(2.7 \mathrm{~g}, 95 \%)$ as a colourless oil (Found: $\mathrm{M}^{+}, 331.2160 . \mathrm{C}_{16} \mathrm{H}_{33} \mathrm{NO}_{4}$ Si requires M , 331.2182); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3461,1733$ and 1695; $\delta_{\mathrm{H}} 0.06$ (6 $\left.\mathrm{H}, \mathrm{s}, \mathrm{SiM} \mathrm{e}_{2}\right), 0.89\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu} \mathrm{u}^{\mathrm{t}}\right.$), 1.58-1.76 ($8 \mathrm{H}, \mathrm{m}$, ring CH_{2} and $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 3.45-3.64\left(4 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OH}\right.$ and $\left.\mathrm{CH}_{2} \mathrm{OTBS}\right)$, $3.72\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCO}_{2} \mathrm{Me}\right.$), 4.14-4.26 ($1 \mathrm{H}, \mathrm{br}, \mathrm{NCH}$) and 4.36$4.56(1 \mathrm{H}, \mathrm{br}, \mathrm{NCH}) ;[a]_{\mathrm{b}}^{26}+6.6$ (c 1.09, CHCl_{3}).

M ethyl (2S,6R)-2-(tert-butyldimethylsiloxymethyl)-6-ethenylpiperidine-1-carboxylate 22

To a stirred solution of $20(76 \mathrm{mg}, 0.23 \mathrm{mmol})$ in THF $\left(6 \mathrm{~cm}^{3}\right)$ were added 0 -nitrophenyl selenocyanate ($65 \mathrm{mg}, 0.28 \mathrm{mmol}$) and $\mathrm{Bu}_{3} \mathrm{P}\left(0.07 \mathrm{~cm}^{3}, 0.28 \mathrm{mmol}\right)$ at $0^{\circ} \mathrm{C}$, and the reaction mixture was stirred for 2 h at room temperature. A fter evaporation of the mixture, the residue was purified by column chromatography on $\mathrm{SiO}_{2}(4 \mathrm{~g}$; hexane-acetone, $50: 1)$ to afford the selenide ($111 \mathrm{mg}, 93 \%$) as a yellow oil; $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 1701 ; \delta_{\mathrm{H}}$ $0.06(6 \mathrm{H}, \mathrm{s}, \mathrm{SiM} \mathrm{e} 2), 0.85\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{\mathrm{t}}\right), 1.63-1.76(3 \mathrm{H}, \mathrm{m}$, ring CH_{2}), 1.82-2.05 ($3 \mathrm{H}, \mathrm{m}$, ring CH H_{2}), $2.91\left(2 \mathrm{H}, \mathrm{t}, \mathrm{J} 8, \mathrm{CH}_{2} \mathrm{Se}\right.$), $3.55\left(2 \mathrm{H}, \mathrm{d}, \mathrm{J} 7, \mathrm{CH}_{2} \mathrm{OTBS}\right), 3.71\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCO}_{2} \mathrm{M} \mathrm{e}\right.$) and 4.194.40 ($2 \mathrm{H}, \mathrm{br}, \mathrm{NCH}$).

To a stirred solution of the selenide ($60 \mathrm{mg}, 0.12 \mathrm{mmol}$) in THF $\left(2 \mathrm{~cm}^{3}\right)$ was added $31 \% \mathrm{H}_{2} \mathrm{O}_{2}\left(0.13 \mathrm{~cm}^{3}, 0.12 \mathrm{mmol}\right)$ at $0^{\circ} \mathrm{C}$, and the resulting mixture was stirred for 3 h at room temperature. The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (20 cm^{3}), and the organic layer was separated and washed with saturated aqueous $\mathrm{NaHCO}_{3}\left(5 \mathrm{~cm}^{3}\right)$ and saturated brine ($5 \mathrm{~cm}^{3}$), dried and evaporated to give a pale yellow oil. This was purified
by column chromatography on $\mathrm{SiO}_{2}(2 \mathrm{~g}$; hexane-acetone, $50: 1$) to afford 22 ($27.7 \mathrm{mg}, 76 \%$) as a pale yellow oil (Found: $\mathrm{M}^{+}, 313.2066 . \mathrm{C}_{16} \mathrm{H}_{31} \mathrm{~N} \mathrm{O}_{4} \mathrm{Si}$ requires M , 313.2071); $v_{\text {max }}($ neat $) /$ $\mathrm{cm}^{-1} 1698 ; \delta_{\mathrm{H}} 0.06\left(6 \mathrm{H}, \mathrm{s}, \mathrm{SiM} \mathrm{e}_{2}\right), 0.85\left(9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu}^{\mathrm{t}}\right), 1.38-1.56$ ($3 \mathrm{H}, \mathrm{m}$, ring CH_{2}), 1.82-1.99 ($3 \mathrm{H}, \mathrm{m}$, ring CH C_{2}), 3.43-3.56 (2 $\left.\mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OTBS}\right), 3.70\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCO}_{2} \mathrm{M} \mathrm{e}\right)$, 4.14-4.25(1 H, br, $\mathrm{NCH}), 4.72(1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}), 5.04-5.17\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}=\mathrm{CH}_{2}\right)$ and 5.79 (1 H, ddd, J 17,10 and $5, \mathrm{CH}=\mathrm{CH}_{2}$).

M ethyl (2S,6R)-(+)-2-(tert-butyldimethylsiloxymethyl)-6-(hydroxymethyl)piperidine-1-carbox ylate 18

Ozone was bubbled through a stirred solution of 22 (10 mg , $0.032 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{M} \mathrm{eOH}\left(7.7 \mathrm{~cm}^{3}, 10: 1\right)$ at $-78^{\circ} \mathrm{C}$ for 20 min , after which the excess of O_{3} was eliminated by passage of a flow of argon through the solution. Sodium borohydride (2.4 $\mathrm{mg}, 0.064 \mathrm{mmol}$) was added to the mixture at $-78^{\circ} \mathrm{C}$, which was then warmed to room temperature and stirred for 1 h . A fter evaporation of the mixture, the residue was purified by column chromatography on SiO_{2} (1 g ; hexane-acetone, $30: 1$) to afford 18 ($9.5 \mathrm{mg}, 94 \%$) as a colourless oil (Found: $\mathrm{M}^{+}, 317.2015$. $\mathrm{C}_{15} \mathrm{H}_{31} \mathrm{~N} \mathrm{O}_{4} \mathrm{Si}$ requires $\mathrm{M}, 317.2020$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1} 3452$ and $1670 ; \delta_{\mathrm{H}} 0.06$ ($6 \mathrm{H}, \mathrm{s}, \mathrm{SiM} \mathrm{e}_{2}$), 0.85 ($9 \mathrm{H}, \mathrm{s}, \mathrm{SiBu} \mathrm{t}^{\mathrm{t}}$), 1.39-1.81 (6 H , m, ring CH_{2}), 3.53-3.65 (4 H, m, CH $\mathrm{H}_{2} \mathrm{OTBS}$ and $\mathrm{CH}_{2} \mathrm{OH}$), $3.75\left(3 \mathrm{H}, \mathrm{s}, \mathrm{NCO}_{2} \mathrm{M} \mathrm{e}\right)$ and $4.21-4.45(2 \mathrm{H}, \mathrm{br}, \mathrm{N} \mathrm{CH}) ;[a]_{\mathrm{D}}^{26}+6.7$ (c $0.25, \mathrm{CHCl}_{3}$).

Benzyl (2R ,5S)-(-)-2-(2-hydrox yethyl)-5-(methoxymethox y-methyl)pyrrolidine-1-carbox ylate 21

To a stirred solution of $12(563 \mathrm{mg}, 1.83 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 cm^{3}) were added $\mathrm{Pr}_{2}{ }_{2} \mathrm{EtN}\left(0.48 \mathrm{~cm}^{3}, 2.75 \mathrm{mmol}\right)$ and M OM Cl ($0.17 \mathrm{~cm}^{3}, 2.2 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the reaction mixture was stirred at room temperature for 8 h . A fter this, the reaction mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}\left(30 \mathrm{~cm}^{3}\right)$ and water ($5 \mathrm{~cm}^{3}$). The organic layer was separated, washed with saturated brine (5 cm^{3}), dried and evaporated to give a pale yellow oil, which was used directly in the next step. To a solution of the oil (598 mg) obtained above in THF ($15 \mathrm{~cm}^{3}$) was added Super-H ydride (4.1 $\mathrm{cm}^{3}, 4.1 \mathrm{mmol}$) at $0^{\circ} \mathrm{C}$, and the resulting mixture was stirred for 2 h at room temperature. The reaction was quenched by the addition of water ($5 \mathrm{~cm}^{3}$) to the mixture, after which the aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3} \times 5\right)$. The organic layer and extracts were combined, dried and evaporated to give a colourless oil, which was purified by column chromatography on $\mathrm{SiO}_{2}(10 \mathrm{~g}$; hexane-acetone, $10: 1$) to afford 21 ($538 \mathrm{mg}, 91 \%$) as a colourless oil (Found: $\mathrm{M}^{+}, 323.1725$. $\mathrm{C}_{17} \mathrm{H}_{25} \mathrm{NO}_{5}$ requires $\mathrm{M}, 323.1731$); $v_{\text {max }}$ (neat)/ $\mathrm{cm}^{-1} 3445$ and 1694; $\delta_{\mathrm{H}} 1.50-1.82\left(2 \mathrm{H}, \mathrm{m}\right.$, ring CH_{2}), 1.83-2.14 ($4 \mathrm{H}, \mathrm{m}$, ring CH_{2} and $\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}\right), 3.28(3 \mathrm{H}, \mathrm{s}, \mathrm{OM}$ e), 3.46-3.70(4 H, m, $\mathrm{CH}_{2} \mathrm{OMOM}$ and $\left.\mathrm{CH}_{2} \mathrm{OH}\right), 3.89-4.12(2 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{NCH}), 4.54$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.15$ and 5.17 (each 1 H , each d, J $13, \mathrm{CH}_{2} \mathrm{Ar}$) and 7.27-7.39 (5 H , m, A rH); [a] $]_{\mathrm{D}}^{26}-34.9$ (c 1.98, CHCl_{3}).

Benzyl (2R ,5S)-2-ethenyl-5-(methoxymethoxymethyl)-pyrrolidine-1-carboxylate 23

To a stirred solution of $\mathbf{2 1}(50 \mathrm{mg}, 0.155 \mathrm{mmol})$ in TH F ($5 \mathrm{~cm}^{3}$) were added o-nitrophenyl selenocyanate ($42.2 \mathrm{mg}, 0.186 \mathrm{mmol}$) and $\mathrm{Bu}_{3} \mathrm{P}\left(0.05 \mathrm{~cm}^{3}, 0.186 \mathrm{mmol}\right)$ at $0^{\circ} \mathrm{C}$, and the resulting mixture was stirred at room temperature for 2 h . It was then evaporated to give a crude selenide. To the crude selenide in THF $\left(5 \mathrm{~cm}^{3}\right)$ was added $31 \% \mathrm{H}_{2} \mathrm{O}_{2}\left(0.15 \mathrm{~cm}^{3}\right)$ at $0^{\circ} \mathrm{C}$, and the resulting mixture was stirred at room temperature for 3 h . It was treated with saturated aqueous $\mathrm{NaHCO}_{3}\left(5 \mathrm{~cm}^{3}\right)$ and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}\left(10 \mathrm{~cm}^{3}\right)$. The organic layer was separated, dried and evaporated to give a pale yellow oil, which was purified by column chromatography on SiO_{2} (3 g ; hexane-acetone, 20:1) to afford 23 ($33.2 \mathrm{mg}, 70 \%$) as a pale yellow oil (Found: M^{+}, 305.1620. $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{4}$ requires $\mathrm{M}, 305.1626$); $v_{\text {max }}($ neat $) / \mathrm{cm}^{-1}$ 1698; $\delta_{\mathrm{H}} 1.35-1.61\left(2 \mathrm{H}, \mathrm{m}\right.$, ring $\left.\mathrm{CH}_{2}\right), 1.76-1.95(2 \mathrm{H}, \mathrm{m}$, ring $\left.\mathrm{CH}_{2}\right), 3.29(3 \mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e}), 3.44-3.65\left(2 \mathrm{H}, \mathrm{m}, \mathrm{CH}_{2} \mathrm{OM} \mathrm{OM}\right)$, 3.73-3.99 (2 H , br m, NCH), 4.51 ($2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}$), 5.00-5.12 (2
$\mathrm{H}, \mathrm{m}, \mathrm{C}=\mathrm{CH}_{2}$), 5.16 and 5.18 (each 1 H , each $\mathrm{d}, \mathrm{J} 12, \mathrm{CH}_{2} \mathrm{Ar}$), $5.76\left(1 \mathrm{H}, \mathrm{ddd}, \mathrm{J} 17,10\right.$ and $\left.5, \mathrm{CH}=\mathrm{CH}_{2}\right)$ and $7.21-7.45(5 \mathrm{H}, \mathrm{m}$, ArH).

B enzyl (2R,5S)-(-)-2-(hydroxymethyl)-5-(methoxymethoxy-methyl)pyrrolidine-1-carboxylate 19

Ozone was bubbled through a solution of $23(24 \mathrm{mg}, 0.079$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}\left(10: 1 ; 11 \mathrm{~cm}^{3}\right)$ at $-78{ }^{\circ} \mathrm{C}$ for 20 min , after which the excess of O_{3} was eliminated by passage of a flow of argon through the solution. Sodium borohydride ($6.1 \mathrm{mg}, 0.157 \mathrm{mmol}$) was added at $-78^{\circ} \mathrm{C}$ to the reaction mixture, after which it was warmed to room temperature and stirred for 1 h . After evaporation of the mixture, the residue was purified by column chromatography on SiO_{2} (1 g ; hexaneacetone, $10: 1$) to afford 19 ($16.7 \mathrm{mg}, 68 \%$) as a colourless oil (Found: M^{+}, 309.1546. $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{5}$ requires $\mathrm{M}, 309.1575$); $v_{\text {max }}$ (neat) $/ \mathrm{cm}^{-1} 3452$ and $1670 ; \delta_{\mathrm{H}} 1.90-2.08(4 \mathrm{H}, \mathrm{m}$, ring CH_{2}), $3.29(3 \mathrm{H}, \mathrm{s}, \mathrm{OM} \mathrm{e}), 3.45-3.65(3 \mathrm{H}, \mathrm{br} \mathrm{m}, \mathrm{NCH}$ and $\mathrm{CH}_{2} \mathrm{OH}$), 3.75-3.98 ($1 \mathrm{H}, \mathrm{m}, \mathrm{NCH}$), 3.99-4.18 ($2 \mathrm{H}, \mathrm{m}$, $\mathrm{CH}_{2} \mathrm{OM} \mathrm{OM}$), $4.50\left(2 \mathrm{H}, \mathrm{s}, \mathrm{OCH}_{2} \mathrm{O}\right), 5.14$ and 5.15 (each 1 H , each d, J $12, \mathrm{CH}_{2} \mathrm{Ar}$) and 7.29-7.40 ($5 \mathrm{H}, \mathrm{m}, \mathrm{ArH}$); $[a]_{\mathrm{D}}^{26}-8.3$ (c $0.78, \mathrm{CHCl}_{3}$).

A cknowledgements

We are grateful to Professor K. Koga, University of Tokyo, for his helpful advice on the preparation and properties of the chiral amine 7, and are also indebted to Professor C. K ibayashi, Tokyo U niversity of Pharmacy \& Life Science, for kindly providing us with the ${ }^{1} \mathrm{H}$ NMR and mass spectra of (\pm)dihydropinidine hydrochloride. This work was financially supported in part by a Grant-in Aid for Scientific Research (N 0 . 03670994) from the M inistry of Education, Science and Culture of Japan.

References

1 The previous paper entitled 'Tandem Beckmann and H uisgen-W hite rearrangement as an alternative to the Bayer-Villiger oxidation of the bicyclo[3.3.1]nonane system: F irst asymmetric synthesis of (-)dihydropalustramic acid. X-R ay molecular structure of 2β-ethyl-9-phenylsulfonyl-9-azabicyclo[3.3.1]nonan-3-one' [0. M uraoka, B.-Z. Zheng, K. Okumura, G. Tanabe, T. M omose and C. H. E ugster, J. Chem. Soc., Perkin Trans. 1, 1996, 1567] constitutes Part 18 of this series; Part 17, T. M omose, K. M asuda, S. Furusawa, O. M uraoka and T. Itooka, C hem. P harm. Bull., 1990, 38, 1707.

2 See, for example, C.-L. Wang and M. A. Wuorola, Org. Prep. Proc. Int., 1992, 24, 585; G. M. Strunz and J. A . Findlay, The Alkaloids, ed. A . Brossi, A cademic Press, N ew York, 1985, vol. 26, p. 89.
3 See, for example, H. Takahata and T. M omose, The Alkaloids, ed. G. A. Cordell, A cademic Press, San Diego, 1993, vol. 44, pp. 189-256; A. N umata and T. Ibuka, The Alkaloids, ed. A. Brossi, A cademic Press, New York, 1987, vol. 31, pp. 193-315; T. H. Jones, R. J. Highet, A. W. D on and M. S. Blum, J. Org. Chem., 1986, 51, 2712; T. H. Jones, S. M . Stahly, A . W. D on and M . S. Blum, J. C hem. E col., 1988, 14, 2197.

4 K. E. Harding and S. R. Burks, J. Org. Chem., 1981, 46, 3920; J. Barluenga, C. N ájera and M . Yus, J. H eterocycl. C hem., 1981, 18, 1297; H. Takahata, H. Takehara, N. Ohkubo and T. M omose, Tetrahedron: A symmetry, 1990, 1, 561; for ' 2,5 -cis'-selective cyclisation of the allenic amine derivatives, see also: R. K insman, D. Lathbury, P. Vernon and T. Gallagher, J. Chem. Soc., Chem. Commun., 1987, 243.
5 J. Royer and H.-P. Husson, J. Org. Chem., 1985, 50, 670; Y. Watanabe, H. Iida and C. K ibayashi, J. Org. Chem., 1989, 54, 4088.

6 N. Y amazaki and C. K ibayashi, Tetrahedron Lett., 1988, 29, 5767; M. Ito and C. K ibayashi, Tetrahedron Lett., 1990, 31, 5065; C. W. J efford, Q. Tang and A . Zaslona, J. A m. C hem. Soc., 1991, 113, 3513; C. Saliou, A. Fleurant, J. P. Célérier and G. Lhommet, Tetrahedron L ett., 1991, 32, 3365; D. L. Comins and M. A. Weglarz, J. Org. Chem., 1991, 56, 2506; M. J. M unchhof and A . I. M eyers, J. A m. Chem. Soc., 1995, 117, 5399; R . Chénevert and M. Dickman, J. Org. Chem., 1996, 61, 3332 and references cited therein.

7 H. Izawa, R. Shirai, H. K awasaki, H.-D. K im and K. K oga, Tetrahedron L ett., 1989, 30, 7221; R. Shirai, K . A oki, D. Sato, H .-D. K im, M. M urakata, T. Y asukata and K . K oga, C hem. P harm. Bull., 1994, 42, 690. Simpkins' group has also studied similar HCLA (homochiral lithium amide) chemistry, see: P. J. Cox and N. S. Simpkins, Tetrahedron: A symmetry, 1992, 2, 1.
8 For preliminary accounts, see: (a) T. M omose, N. Toyooka and Y. Hirai, Chem. Lett., 1990, 1319; (b) T. M omose, N. Toyooka, S. Seki and Y. Hirai, Chem. Pharm. Bull., 1990, 38, 2072. M ajewski's group has also investigated the enantioselective deprotonation of tropinone using HCLA and reaction of the chiral lithium enolate of tropinone: M. M ajewski and R. Lazny, J. Org. C hem., 1995, 60, 5825 and references cited therein.
9 For 9 -benzyl-9-azabicyclo[3.3.1]nonan-3-one, see: K. Stach and O. Dold, A rzneim. Forsch., 1962, 12, 1022. The procedure was partially modified in the present work: see Experimental section.
10 For 8-benzyl-8-azabicyclo[3.2.1]octan-3-one, see: K. Nádor, Gy. H ajdu, B. Szecsö and F. Zima, A rzneim. Forsch., 1962, 12, 305.
11 The conditions for HPLC analysis are as follows: for 11 and 12; CHAIRALCEL OJ, hexane-PriOH (10:1), for 13; CHAIRALPAK A S, hexane-PriOH ($10: 1$).
12 W. H. Tallent, V. L. Stromberg and E. C. H orning, J. A m. Chem. Soc., 1955, 77, 6361; W. H. Tallent and E. C. H orning, J. A m. Chem. Soc., 1956, 78, 4467.
13 M. E. Jung and M. A. Lyster, J. Am. Chem. Soc., 1977, 99, 968; J. C hem. Soc., C hem. Commun., 1978, 315.

14 R . K. Hill and T. Y uri, Tetrahedron, 1977, 33, 1569.
15 Y. Watanabe, H. Iida and C. K ibayashi, J. Org. Chem., 1989, 54, 4088; for other syntheses of dihydropinidine, see: M. Bonin, J. R. Romero, D. S. G rierson and H.-P. H usson, Tetrahedron Lett., 1982, 23, 3369; D. L. Comins and M. A. Foley, Tetrahedron Lett., 1988, 29, 6711; M. A mat, N. L lor, J. Hidalgo, A. H ernandez and J. Bosch, Tetrahedron: A symmetry, 1996, 7, 977 and references cited therein.
16 K. B. Sharpless and M. W. Young, J. Org. Chem., 1975, 40, 947; P. A . Grieco, S. Gilman and M. Nishizawa, J. Org. Chem., 1976, 41, 1485.

Paper 6/07812E
Received 18th N ovember 1996
Accepted 7th J anuary 1997

[^0]: † Present address: Department of Chemistry, Toyama University, G ofuku 3190, Toyama 930, Japan.

